

MOTOCALV EG

CALIBRATION UTILITIES

KEY BENEFITS

Improves path accuracy for high-precision applications

Ability to manually calibrate robot with a laptop computer Improves offline programming accuracy

MINIMUM SYSTEM REQUIREMENTS

Windows® 7 (32 bit/64 bit) Windows 10 (64 bit) 1 GB RAM 2 GHz processor speed 1 GB free hard drive space

COMPATIBILITY

YRC1000 controller YRC1000micro controller DX200 controller DX100 controller NX100 controller XRC controller MRC controller ERC controller

- Economical software tool that is used to improve absolute positioning accuracy, Tool Control Point (TCP) and tool posture of Motoman® robots.
- MotoCalV EG performs five types of calibration:
- Robot calibration
 Improves the absolute accuracy
 of the robot. Adjusts absolute data
 values by teaching five different
 postures at five different points
 (total of 25 points).
- Tool calibration Calculates the exact tool data to
- determine the TCP. Some form of tool calibration must be completed before robot can be calibrated. Adjusts tool data values by teaching seven different postures at one point (total of seven points).
- Tool posture calibration Provides accurate TCP, which is essential for the robot to perform certain motion types such as linear and circular interpolation. Adjusts tool data by teaching one posture at one point (total of one point); calculates exact tool positions (Rx, Ry, Rz). Tool posture is the angle data that shows the relationship between flange coordinates and tool coordinates.

- Workpiece calibration (used with MotoSim® EG)
 - Recognizes and compares positional differences (between each robot and workpiece) in robot programs created by MotoSim EG versus the program created using the teach pendant. MotoCalV EG then converts the position data from MotoSim EG into position data for the actual robot by using the calculated positional difference obtained between the robot and the workpiece.

- Layout correction

(used with MotoSim EG) Corrects the robot layout in a workcell that is created through MotoSim EG. The "robot layout correction" function compares the MotoSim EG job to the INFORM programmed job. The "travel axis tilt correction" function calculates the positional difference between the travel axis and the robot positioned on the travel axis.

CALIBRATION PROCESS

- The programming pendant is used to teach the points required for all five types of calibration. All points must be taught carefully and with a high degree of accuracy to ensure optimal results.
- Once the points are taught by a programmer, MotoCalV EG correlates the actual taught points versus the theoretical points using a software algorithm.
- The full-featured MotoCal package uses an external encoder and measurement cable to correct the absolute values of the robot; therefore, some manual touch up of robot program points may be necessary after a mechanical failure when using MotoCalV EG.

Absolute positioning accuracy is important for path accuracy in high-precision applications and is essential for offline programming (OLP). Like any mechanical system, robots are built within manufacturing tolerances. These small differences affect the absolute positioning accuracy of the robot.

				uo	unij	up	ai	dX(mm)	dY(mm)	dZ(mm
1	0.686	0	0	0	0	0	0	0.000	0.000	0.00
2	0.337	0	-482	413	-48	102	11	-0.154	0.000	0.27
3	0.306	0	-639	357	-56	139	18	-0.231	-0.001	0.12
4	0.297	0	-665	318	-60	169	18	-0.232	-0.001	0.20
5										
a										

Tool Calibration

STEP	Distance	X	Y	Z	Tx	Ту	Tz	
Mean		1768.548	134.908	757.120	28.754	-13.009	-14.040	
C0000	0.412	1768.446	134.574	756.903	-154.310	-2.770	25.010	
C0001	0.348	1768.667	134.764	756.826	-164.620	-2.630	84.540	
C0002	0.226	1768.641	135.114	757.106	-158.230	10.020	-62.940	
C0003	0.310	1768.375	135.103	757.289	178.110	-25.910	-76.580	
C0004	0.237	1768.690	135.093	757.077	174.960	-17.490	-108.630	
C0005	0.651	1768.623	134.463	757.589	161.230	-14.620	-29.820	
C0006	0.379	1768.394	135.247	757.050	164.140	-37.660	70.140	
CLOSE								

Judgement Job

Layout Calibration

YASKAWA AMERICA, INC. 100 Automation Way | Miamisburg, OH 45342 937.847.6200 | motoman.com

Technical specifications subject to change without notice. | Motoman is a registered trademark. All other marks are the trademarks and registered trademarks of their respective owner. DS-938 ©2021 Yaskawa America, Inc. FEBRUARY 2021